“假使,无限小不是零,那么最终阿基里斯追上乌龟的时间,肯定不是个整数,但用算学一算却明明是个整数。”
“还有,就是取一木无限半分,累世不竭,也是一样的道理。那个时间每次减半,可是数量却无限大。这个无限大的每次减半的时间相加,为什么不是无限大,却只是一个固定的值?”
“还有木取一半,累世不竭,那么无限多的次数之后,这无限多的木头相加,最终还是小于那根木头的长度。既然都已经是无限多了,怎么可能会是小于那根木头的长度呢?”
“再比如,一根线段,长一尺,上面有无限多个点。一根线段,长两尺,上面也是无限多个点。那么,两尺长的线段上的无限多,是一尺长的无限多的两倍吗?”
“再比如,巨子说他知道球体积的算法,是看两位先生算出来过,说用的是无限分割法。假使一个球,无限被割片,那么无限被割,每一片的厚度就是无限小。子墨子言,厚,方可大。只有有高度,才能求体积,那么无限大的无限小相加,为什么会是球体积那个固定的值呢?”
“无限大、无限小,到底是怎么计算的呢?”
“无限大是数吗?无限多个逐渐趋近于无限小的数相加,并不是无限大,阿基里斯乌龟和取木半截都可以证明是一个固定的值,这是可以算出来的吗?”
庶轻侯拍了拍额头,笑道:“我想到当年巨子的一句话。我也问过类似的问题,他说他不会,还说要是他自己什么都会了,能把所有的天志都解答出来,那还收弟子干什么?”
“这些问题,你们自己收好,不要放弃。记得《劝学篇》里的话,青出于蓝而胜于蓝、冰水为之而寒于水,我希望你们学成之后,有朝一日能够找到我,告诉我这无限大、无限小到底该怎么算。正所谓,知之为知之、不知为不知,现在我还是用巨子当年的那番话,告诉你们。“
“要是我什么都懂了,领悟了天地间所有的天志,那还要你们做什么?我希望你们青出于蓝而胜于蓝。”
“现在!下课!”
一生下课,弟子们纷纷起身,等庶轻侯离开之后,那个提问的学生将这个难以理解的问题写在了纸上,揣摩着青出于蓝而胜于蓝的话,心道有朝一日,我定要知道这无限大、无限小到底该怎么算。
庶轻侯摆脱了这些他喜欢的、但是往往会提出许多让他绞尽脑汁也得不到答案的学生。
回到自己的宿舍,便收到了两封信。
一封是就住在他隔壁不远,但是因为他躲进庠序精研算学不去过问利天下事,导致两个人几乎不说话的、研究天文学的心上人。
两个人这些年一直靠书信交流,因为一旦见面就要争吵利天下的政策到底该怎么样,索性也就不见面。
庶轻侯很开心地打开了信件,看着上面镌细的字体,并不是很在意信上的内容。
信上说了一件大事,她们真的看到了太岁星的“月亮”,暂时只看到一颗,围绕着太岁星旋转,即便千里镜的倍数还不够大,仍然能够看到它们围绕着太岁星旋转,和月亮、地球的假说是一样的。
并认为如果那些磨镜的工匠可以将千里镜制作的更好一些,或许真的可以借助太岁星“月亮”的阴晴圆缺,来测绘整个九州的带有经纬度的准确地图。
另外,她们也观察到了启明星,或者叫长庚星的相位变化,足以证明启明星的确不是围绕着大地转动,而是围绕着太阳在旋转,无论如何天圆地方的说法都不可以解释这两个问题。
信的最后,向他请教了一些关于椭圆的问题,询问他关于椭圆焦点的许多内容,但却并没有说用来做什么。
展开了第二封信,是他的兄长庶轻王写的,这信上的内容就简单的多了。
告诉他,他的侄子在高柳成婚了,不久之后就要调回泗上,让他过完年回家一趟,一家人一起聚一聚。
别的内容再也没有多说。
庶轻侯看了看第二封信,终于提起笔,取了一张纸,给第一封信写了一封回信。
“椭圆焦点的学问,源于子墨子对于凹凸镜反射的光学八法中,圆点是否就是焦点讨论的延伸,这并不是一句两句可以说清楚的。”
“我在琢磨一元三次方程的解法,我的学生在询问我关于无限小累加问题的答案,在我的小屋中我恐怕并没有时间去书写一整套关于椭圆的问题。”
“我的侄子成婚了,要回泗上,也要在泗上举办一个婚礼。到时候我要回去,那时候我就暂时不用思索一元三次方程和无限小叠加的问题了。如果我们走运河去,再走驿路返回,那正好是是一个椭圆的形状,两个焦点的连线就是从这里到我家的最短距离,但却并没有路。”
“那将是一个一起探讨椭圆问题的最好机会,如果你愿意的话。”
短短地写完了回信,庶轻侯翻开自己的每日记事本,记录下了今天在课堂上发生的一切。
而在这篇每日记事的最后,庶轻侯这样写到。
“虚数和三幂方程;子墨子光学八法留下的椭圆和曲面焦点的讨论;炮兵关于曲线运算的需求;无穷小是否为零;割球法累加计算球体积;无穷小是否可以计算;运算中无穷小是否可以看作是零……”
“可以预见,九数之学,百年内,大乱将至。百年于人可谓两世,于宇宙浩渺不过一瞬,其道无穷,吾生有涯,实乃人生第一憾事。”
在阖上记事本前,他取来一张二指宽的纸条,重重地写下了“大乱将至”四个字,夹在了今日记录的关于无穷小是否为零、包含无穷小的运算是否合理的那一页日记上。
83书屋:(www.83shu.com)