似乎只能用时间打磨了。
总之,这注定是个无眠的夜晚了。
原本林灰也不需要这么着急的。
但尹芙·卡莉发来的邮件中也顺带着提到了美国国内对生成式摘要算法跟进的情况。
形势虽然不算是悲观,但也谈不上是很乐观。
在林灰鼓捣出生成式摘要算法之后。
很多美国商业性质的科研机构都在迅速跟进林灰的研究。
除此之外,还有很多计算机方面实力超强的美国大学(包括但不限于诸如麻省理工学院、斯坦福大学、卡内基梅隆大学等)也在跟进这一方向。
这些海外的科研机构会迅速跟进林灰的研究也不足为奇。
涉及到文本摘要这个自然语言处理的细分领域这方面的研究虽然看起来不怎么起眼。
普通人里面多数人中甚至没啥人知道有人在从事着这方面的工作。
但这丝毫不妨碍文本摘要对于人类文明进步的重要意义。
对此之前林灰已经进行过很多这方面的论证了。
事实上这个时空这些海外的科研团队应该一开始就很重视文本摘要这方面的研究。
只是现在的重视程度又提高了一个层级。
之所以重视程度提高一个层级跟林灰搞出的动静有着不可分割的联系。
在林灰的研究成果出现之后。
目前国内外常用的自动文本摘要技术根据摘要产生的不同方法可以分为两种:
抽取式文本摘要和生成式文本摘要。
抽取式文本摘要的方法实现简单,只是从文档中抽取已有的句子形成摘要。
生成式文本摘要则是要利用自然语言理解技术来执行文本的语法和语义分析和融合信息并在此基础上生成新的摘要句子。
由于林灰刚搞出生成式摘要算法没多久。
所以现在生成式摘要算法除了在南风APP上应用了之外其应用范围还不算太广泛。
反倒是抽取式方法由于一些历史方面的沿革而在应用方面较为广泛。
但这并不能据此否定生成式文本摘要的价值。</div>
学术层次从来都不是多数压倒少数的。
真理往往掌握在少数人手中。
抽取式文本摘要归根结底只能看作一个组合优化问题。
这在生成式文本摘要面前终究是落了下乘。
尽管处理同一个问题(文本摘要)的两种方法强行分为上下乘似乎有些不妥。
siluke.
可人类在文本摘要的目的是什么呢?
甚至于人类在自然语言处理这方面的研究的目的是什么呢?
终归不过是为了更好的理解自然语言进而能够更加高效地处理自然语言。
以这个角度来衡量的话,生成式摘要算法在理解自然语言方面的能力无疑要比抽取式摘要算法高到不知道哪去了。
因此称生成式文本摘要算法为上乘而抽取式文本摘要算法为下乘也不偏颇。
想来这些海外的研究团队应该也是看到了林灰搞出来的生成式摘要算法在让机器对自然语言的理解能力更上一层楼之后。
才会对生成摘要这方面研究的重视程度进一步提升。
不得不说,方向对了。
事实上前世由于人工智能领域崛起基于人工智能的生成式文本摘要得到质的飞跃之后生成式文本摘要更是一举成为生成摘要的主要研究方向。
不过仅仅是一些科研机构在文本摘要算法方面加大投入还不足以让林灰这么重视。</div>
83书屋:(www.83shu.com)